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Many epidemiological studies conducted in the last several years have reported associations
between exposure to airborne particulate matter, measurd as PM1O (clO pm in diameter), and
daily morbidity and mortality. Howeve, much ofthe evidence involves effec on the elderly pop-
ulation; there is.less evidence about the efde of pa lates on cildren, especially those under 2
years of age. To examine these issues, we conducted time-series analyses of 2 years of daily visits
to pimary health care clinics in Santiao, Chile, where counts were computed for either upper or
lower symptoms and for cohorts of children 3-15 years of age and below age 2. Daily
PM,0 and ozone measurements and meteorological variables were available from imtruments
located in downtown Santiago. The multiple regression anaysis indicates a statisti significant
association between PM10 and medical visits for lower respiratory symptoms in childrn ages
3-15 and in children under age 2. PM1O is abo ted with medical visits related to upper res-
piratory symptoms in the older cohort, while ozone is aocated with visits related to both lower
and upper respiratory mptoms in the older cohort. For children under age 2, a 50-pg/m3 change
in PM10 (the apimat interquartile range) is asociated with a 4-12% increase in lower respi-
ratory symptoms. For children 3-15 years of age, the increase in lower respiratory smptoms
ranges om 3 to 9% for a 50-pgm3 chang in PM,0 and. 5% per 50 ppbhge in ozone. These
magnitudes are similar to results from studies of children undertn in Western industrial
nations. Iey waon air pollution, children, Chile, morbidity, p late mater, PM10, respirato-
ry. Environ Heal Perspct 107:69-73 (1999). [Online 14 December 1998]
hbp:llehpnol.niehs.nibgovldecsIl9991107p69-73oJalabsract btml

The 4.5 million inhabitants of Santiago, Chile,
are exposed to high levels of air pollution dur-
ing a significant part of the year. Located in the
western side of South America, the city fre-
quently confronts strong anticyclonic condi-
tions that cause a thermal inversion layer at a
height of 600-900 m above sea level. The city
is in the middle of a valley at an average altitude
of 570 m above sea level and is surrounded by
two mountain ranges: the Andes mountains
and the Cordillera de la Costa. These geo-
graphic conditions restrict ventilation and dis-
persion of air pollutants within the valley. Such
features explain why Santiago, with emission
levels similar to those in other cities, experi-
ences high atmospheric contamination levels.

Data from the Chilean Health Service
show that the standard for the 24-hr average of
particulate matter below 10 pm in diameter
(PM1O), 150 pg/m3, is exceeded throughout
the winter. The average annual concentrations
of PM10 exceed Chile's standard of 50 pg/m3
by a factor greater than 2. The 1-hr standard
for carbon monoxide is exceeded in 20% of
the data collected during the winter time,
while 1-hr ozone often exceeds 0.09 ppm dur-
ing the summer (1). These levels ofatmospher-
ic pollution are likely to cause health effects
among the population of Santiago. Recent
research used time-series data to examine the
association of PM1O and daily mortality
between 1989 and 1991 in Santiago (). The

results obtained suggest a strong association
between these two variables even after control-
ling for several potential conf6unders indud-
ing temperature, season, month, and day of
the week. However, there have been few stud-
ies completed in Chile on the effects of PM1O
pollution in relation to respiratory illness in
Santiago. In addition, on a worldwide basis,
there are only a few epidemiologic time-series
studies of the effects of air pollution on the
health of children and infants (3-5). Studies
in the developing world are important because
the extent to which findings from industrial-
ized countries can be extrapolated to other
areas is uncertain (6).

This paper examines how weather condi-
tions and air pollution influence the likelihood
of medical visits among children in Santiago.
Data on morbidity due to respiratory diseases
among children under 15 years of age have
been collected from a group of public primary
health clinics. In Chile, almost 75% of the
population are members of the public health
care system, which serves primarily the lower
70% of the population income distribution.

Methods

Morbidity, Air Pollution, and
Weather Data
In Santiago there are about 70 primary
health care centers (clinics) in the public

health care system. On average, they pro-
vide service for infants with 10-20 doctor
hr/day/clinic. During 1992, there were
close to 1,830,000 medical visits for pedi-
atric morbidity in the metropolitan area
excluding well-child and annual physical
examinations (7).

The Infant Respiratory Disease Program
was developed by the Chilean Ministry of
Health to provide effective care at the clinics
and to evaluate the epidemiology of pedi-
atric illnesses. A monitoring program for
infant respiratory disease provides informa-
tion from 12 primary health provision cen-
ters, designated as sentinel clinics (8). The
present research used information from
eight sentinel dinics between 13 July 1992
and 31 December 1993. These clinics serve
12% of the child population in the province
(n = 153,548) (9).

Santiago is divided into six Public Health
Services Areas. The clinic selection process
followed a criterion that allowed choosing at
least one clinic in each health service area.
Three of the 12 clinics were excluded
because of missing values or insufficient
information. An additional clinic was
excluded because it was more than 12 km
from the nearest air pollution monitoring
station. With the eight remaining clinics,
each of the city's six health service areas was
represented. Using a standardized form, the
total number of child medical visits and res-
piratory morbidity diagnoses was collected
every day. Doctors working at each clinic
prepared the diagnoses. The researchers of
the infant respiratory disease program
trained the record-keeping staff at each dinic
to group the diagnoses observing the follow-
ing classifications: 1) nonrespiratory visits,
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2) respiratory visits due to upper respiratory
symptoms (URS), and 3) respiratory visits
due to lower respiratory symptoms (LRS).
In this case, URS included inflammation
processes that affected the respiratory tract
above the larynx such as pharyngitis, com-
mon cold, adenoiditis, sinusitis, tonsillitis,
and otitis media. LRS included inflammato-
ry processes affecting the larynx, trachea,
bronchus, or lungs such as bronchitis, pneu-
monia, bronchopneumonia, bronchial asth-
ma, acute obstructive bronchitis, acute
laryngitis, and acute tracheitis. When there
were two or more simultaneous diagnoses,
the most serious one was recorded. The
original data collection separated the chil-
dren in two age groups: less than 2 years old
and children from 2 to 14 years old. For
each day, the number of medical visits with
each diagnosis was totaled across clinics.
Each clinic serves an average of 2,600 chil-
dren under age 2 and about 16,000 between
ages 3 and 14.

The clinics are only open during work-
ing hours Monday through Friday; howev-
er, the number of doctors attending to
patients at the clinics (in "pediatric hours")
varies from day to day. This fact implies
that the supply of medical attention varies
accordingly. Some patients do not seek
medical attention because of the limited
hours of clinic operation and also because
of clinic capacity restrictions (as evidenced
by long waits). While the extent of unsatis-
fied demand cannot be known with cer-
tainty, each clinic made a daily record of
the number of pediatric hours available for
morbidity visits.

The recorded data reflect medical visits
in general and do not discriminate between
first visits or follow-up visits; consequently,

Table 1. Summary statistics of air pollution and
temperature data for the eight clinics during the
study period, 13 July 1992-31 December 1993

Total visits
Total visits <2 years old
Respiratory illness
Total visits
Total visits <2 years old
Lower respiratory illness
Total visits
Total visits <2 years old
Upper respiratory illness
Total visits
Total visits <2 years old
PM10 (24-hr average pg/m3)

Ozone (1-hr maximum, ppb)

Daily
mean

565.0
221.9

357.1
152.8

215.4
104.3

141.6
48.5
108.6

56.2

Temperature (24-hr average, 'C) 15.8

Max-min
values

859-376
316-136

704-166
310-66

440-71
202-42

290-69
80-24

380-18.5
(135.5-70.3)

176-10
(77-31)
23.7-5.4

(20.2-11.5)

the data capture the number of visits and not
the number of episodes. Out of the 370
planned days of observations (excluding
weekends and holidays), there was informa-
tion for 352 days from the eight clinics; the
remaining days were not included because
there were fewer than eight clinics fully func-
tioning. In addition, 9 days were excluded as
outliers because they were holidays or
because of labor disputes. Table 1 provides
the general descriptive statistics of the data.
There was an average of 565 visits/day
among the eight clinics surveyed. Sixty-three
percent of all medical visits of children under
15 years old were for respiratory illness.
Among these, 60.3% were for LRS.

The health end points studied represent
children who were successful in obtaining a
doctor's attention and who were then diag-
nosed with respiratory illness. Assuming that
diagnoses were without error (or with errors
independent of the pollutant and tempera-
ture variables), some parents did not seek
treatment for their children, some took them
to hospital emergency rooms, and some who
took them to clinics may have been unsuc-
cessful in obtaining a doctor's attention due
to lack of capacity. These actions may have
resulted in an attenuation or flattening of the
estimated dose-response function at the
higher pollution concentrations.

Daily data for temperature, PM1O, and
ozone were available from the Metropolitan
Environmental Health Service. PM1O was
monitored by a low-volume dichotomous
sampler, and ozone was collected using the
chemioluminescent principle. The average
of the four stationary monitors located
downtown within a 12-km2 quadrilateral
was used to obtain the daily concentrations
of PMIO and ozone. The correlations of
PM10 with ozone and temperature were
-0.1 and -0.45, respectively, and the corre-
lation for ozone and temperature was 0.67.

Analyses
Examination of the daily counts for report-
ed medical visits for upper and lower respi-
ratory symptoms for infants below 2 years
of age (young) and between ages 3 and 15

(older) supports distributional assumptions
allowing ordinary least squares as the prin-
cipal statistical analysis (the counts show
no truncation and appear normally distrib-
uted). Each age group was examined sepa-
rately for both upper and lower respiratory
visits for a total of four different models.
To develop our regression model, we deter-
mined the best fit of several covariates prior
to the entry of air pollution into the model.
In turn, we examined the association of
each outcome with daily average tempera-
ture and humidity (lagged up to 4 days),
day of the week, season (or month), and
year of the study. Day of the week was like-
ly to be important because the clinics were
closed on weekends. Visual inspection of
the data indicated clear seasonal patterns.
Once the covariates with the strongest asso-
ciation were determined, PM10 was entered
into the model. Contemporaneous expo-
sure and lags up to 4 days were examined.
All models were corrected for autocorrela-
tion using AUTOREG in SAS (10).

In the second analysis, seasonality was
modeled as a locally weighted (Loess)
smooth of time using a general additive
model (GAM) in S-Plus (11,12). The
Loess smoothing technique can accommo-
date nonlinear and nonmonotonic func-
tions, offering a more flexible nonparamet-
ric modeling tool. In using the Loess
smooth, each observed value is replaced by
a predicted value, generated by connecting
the central point from a weighted regres-
sion for a given span (neighborhood) of the
data (13). The weights of the regression are
reduced as one moves further from the cen-
tral point. For our purposes, we chose a
span that included 20% of the data, or
approximately 3 months. The model was
then checked to ensure that no serial corre-
lation remained in the data. We also tested
the sensitivity of the results to alternative
spans of the data. Because smoothers are an
effective means of controlling for seasonali-
ty, we used this model to explicitly exam-
ine alternative lags in air pollution.
A second and third sensitivity analysis

involved rerunning the model after dropping

Table 2. Ordinary least squares regression results for clinic visits for upper (URS) and lower respiratory
symptoms (LRS) in young (<2 years old) and older (3-15 years old) children (estimated P-coefficient with
standard error in parentheses)

Young Young, LRS Young, URS Older Older, LRS Older, URS
PM10 0.076 (0.026)** 0.061 (0.020)** 0.004 (0.012) 0.124 (0.042)** 0.076 (0.028)** 0.052 (0.022)*
Ozone 0.053(0.043) - 0.031 (0.036) 0.021 (0.020) 0.222 (0.069)** 0.109 (0.046)* 0.117 (0.035)**
PM10 and ozone
together
PM10 0.069 (0.028)* 0.056 (0.022)** 0.001 (0.013) 0.088 (0.045)* 0.062 (0.029)* 0.029 (0.024)
Ozone 0.013 (0.048) 0.002 (0.037) 0.015 (0.023) 0.227 (0.076)** 0.104 (0.049)* 0.120 (0.041)**

The model also includes daily average temperature (1-day lag); binary variables for day of week, month, and year; and
corrections for autocorrelation. PM1O (pg/m3) and ozone (ppb) are unlagged.
*p<0.05; **p'.01.
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the days with the highest 5% of PM10 con-
centrations (PM1O >235 jig/m3) and the
coldest 5% of the days (<80C). Fourth, we
reran the GAM model without the monthly
binary variables since these variables are cor-
related with PMIO levels and their inclusion
may result in "overcorrection." Once season-
al patterns in respiratory symptoms were
controlled for via the smooth of time, month
per se should have had little additional influ-
ence on symptoms. Fifth, to additionally test
the influence of season, the regression was
rerun for only the 8-month nonsummer
period by excluding November through
February from the analysis of this southern-
hemisphere city. Finally, we examined the
models after indusion of a second pollutant,
ozone, was added to the specification.

Results
In general, the best fit for the ordinary least
squares model induded average temperature
(lagged 1 day, although same-day tempera-
ture performed almost as well), day of the
week, and dichotomous variables for each
month and year. Medical visits associated
with LRS were highest on Monday and
Friday. For URS, there was little difference
by day of week. Three of the four outcome
measures (i.e., young lower, older lower, and
older upper symptoms) peaked during the
winter months. Visits for URS for those
below 2 years of age had a less distinct sea-
sonal pattern, with some peaks in March,
April, and May. For the older subgroup,
there was no evidence of serial correlation in
the error terms, while for the younger sub-
group, a three-period correction effectively
reduced the serial correlation, based on the
Durbin-Watson statistics. As summarized in
Table 2, there was a statistically significant
association between PM10 and LRS in both
the young and older cohorts, between PM1O
and URS in the older cohort, and between
ozone and URS and LRS in the older cohort.
Inclusion of a term for linear time trend did
not alter the results. The models explained
about 80% of the variation in visits for LRS,
about 70% of the variation in visits for URS
in older children, and about 20% of the vari-
ation in the URS visits of infants. Models
containing both PM1O and ozone did not
change significantly from the single pollutant
models, with the exception of URS in the
older cohort; in this case the association with
PM10 was reduced in the joint pollutant
model. In case of miscoding of symptoms,
both URS and LRS were combined for each
of the age groups. For the younger children,
PM1O but not ozone was associated with
symptoms, while for the older children, both
pollutants were associated with symptoms.

Table 3 summarizes the results for dif-
ferent lags using the GAM, in which a

smooth of time is used in place of dichoto-
mous variables for month and year. The
locally weighted smooth spanned about 3
months of data and therefore proxied the
seasons of the year. This model generated
stronger associations between the clinic vis-
its and PM1O, relative to the model using
ordinary least squares. For LRS in both
cohorts, a 3-day lag demonstrated the
strongest association, but the differences
between alternative lags were not large.
However, for URS and LRS in the older
cohort and for LRS in the younger cohort,
a 5-day moving average (days 0-4) generat-
ed much larger and stronger associations
with PM1O. For ozone, only unlagged expo-
sure was associated with clinic visits, with
the exception of an association between a 1-
day lag in ozone with URS in the older
cohort. The effect was similar in magnitude
and significance to the unlagged result.

Table 4 summarizes the results of differ-
ent sensitivity analyses using the GAM. In
the basic model, which included tempera-
ture, day of week and month, and a smooth
of time, PM1O was statistically associated
with lower respiratory visits in the young
and older children. The results appeared
relatively insensitive to the length of the
span chosen. However, the inclusion of a
monthly dichotomous variable reduced the
magnitude of the effect. For example, for

lower respiratory visits for the younger
cohort, the regression coefficient dropped
from 0.19 to 0.05. Visual inspection of
residual and autocorrelation function plots
indicated an absence of any remaining serial
correlation. Models that stratified on lower
PM10 (PM10 <235 pg/m3) and warmer
days (daily average temperature >8OC) gen-
erally produced results similar to the full
models. One-hour maximum ozone con-
centrations were associated with upper and
lower respiratory visits in the older cohort.
In the multipollutant model, PM1O
remained significantly associated with lower
respiratory visits in both cohorts, while
ozone was associated with lower and upper
respiratory visits in the older cohort. The
magnitude of the effect was slightly higher
than that predicted from the ordinary least
squares models. For example, for PMIO
among the younger cohort, the coefficient
for lower respiratory visits was 0.049 in the
ordinary least squares model versus 0.052 in
the GAM, while for upper respiratory visits,
the coefficients were 0.066 versus 0.083,
respectively. Additional smoothers of tem-
perature did not alter the results for any of
the end points. PM1O was not associated
with nonrespiratory symptoms.

Table 5 summarizes some of the model
results indicating the percent changes in
clinic visits for lower respiratory visits for

Table 3. Alternative lags for PM10 using general additive model with Gaussian distribution for clinic visits
for upper (URS) and lower respiratory (LRS) in young (<2 year old) and older (3-15 year old) children (esti-
mated p-coefficient with standard error in parentheses)

PM10 lag Young, LRS Young, URS Older, LRS Older, URS
0 0.12 (0.02)# 0.01 (0.01) 0.20 (0.04)# 0.06 (0.02)**
1 0.15 (0.02)# 0.00 (0.01) 0.20 (0.04)# 0.05 (0.02)**
2 0.15 (0.02)' 0.01 (0.01) 0.20(0.04)# 0.06 (0.02)**
3 0.19 (0.03)# -0.01 (0.01) 0.28 (0.04)# 0.05 (0.02)*
4 0.15 (0.03)' -0.01 (0.01) 0.20(0.04)# 0.01 (0.02)
0 to 4 moving average 0.25 (0.03)# -0.00 (0.01) 0.36 (0.05)# 0.14 (0.03)'
The model also includes daily average temperature (l-day lag), binary variables for day of week, and a Loess smooth of time.
*p<0.05; **p<0.01; #p<0.oJ1.
Table 4. General additive model regression results for clinic visits for upper (URS) and lower respiratory
symptoms (LRS) in young (<2 year old) and older (3-15 year old) children (estimated p-coefficient with
standard error in parentheses)

Young, LRS Young, URS Older, LRS Older, URS
PM10 0.052 (0.024)* -0.021 (0.014) 0.083 (0.033)** 0.008 (0.026)
PM10, less top 5% (< 235 pg/m3) 0.059 (0.026)* -0.011 (0.016) 0.046 (0.035) -0.004 (0.028)
PM10, less coldest 10% O>80C) 0.052 (0.023)* -0.019 (0.015) 0.086 (0.033)** 0.006 (0.027)
PM1I, nonsummer months 0.039 (0.026) -0.025 (0.17) 0.082 (0.030)** 0.012 (0.029)
PM10, no month variable 0.186 (0.025)# 0.0003 (0.011) 0.279 (0.036)# 0.183 (0.028)#
PM10, no month variable, 0.140 (0.021)' -0.003 (0.013) 0.263 (0.030)' 0.144 (0.026)#
5-day moving average
Ozone 0.033 (0.034) 0.022 (0.020) 0.120 (0.047)** 0.123 (0.035)#
PM10 and ozone
together
PM10 0.045 (0.024)* -0.023 (0.014) 0.082 (0.032)** 0.008 (0.026)
Ozone 0.025 (0.038) 0.020 (0.020) 0.154 (0.046)# 0.131 (0.037)#

The model also includes daily average temperature (lagged one day), binary variables for day of week and month, and a
Loess smooth of time.
PM10 (pg/M3) is lagged 3 days and ozone (ppb) is unlagged.
*p<0.05; **p<0.01; 'p<0.001.
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young and older children based on the
GAM model. For children under age 2, a
50-pg/m3 change in PM1O (about half of
the mean concentration) was generally
associated with a 3% increase, increasing
up to 9% in the model without month
variables. For children age 3-15 years of
age, the lower respiratory effects were in
the range of 2-4% for a 50-pg/m3 change
in PM1O (increasing to 13% in the model
without month variables) and 5%/S0 ppb
change in ozone. Finally, for clinic visits
attributed to upper respiratory visits, a 50-
pg/m3 change in the 5-day moving average
of PM0O is associated with a 7% increase.

Discussion
The analysis indicates that PM10 is associ-
ated with clinic visits for lower respiratory
visits in children 3-15 years of age and
those under age 2. A prior study in
Santiago reported a strong and consistent
association between acute exposure to
PM10 and mortality (2). The association
existed for all-cause mortality as well as
mortality associated with either cardiovas-
cular- or respiratory-specific mortality.
Prior to the current study, only a few efforts
have been reported in the time-series epi-
demiologic literature linking air pollution
to either mortality or morbidity among
young children, particularly in non-
Western industrialized countries. Several
ecological studies have reported an associa-
tion between particulate matter and neona-
tal or infant mortality (3-5,14)

Morbidity effects of particulate matter
on children with asthma or asthmalike
symptoms also have been reported from sev-
eral panel studies in the United States and
Western Europe using daily time-series data
(15-17). Among panels that were not
entirely composed of asthmatics, several
studies have reported an association between
PMIO and lower respiratory symptoms
(18-20). Air pollution effects on children
have also been demonstrated from daily data
on emergency room visits (21,22).

As in all studies, our use of the Santiago
data had both advantages and disadvan-
tages. One of the principal advantages was
that the health care professionals in the clin-
ics included in our study were specifically
trained in filling out the special diagnostic
forms. Studies that use data on hospital
admissions or emergency room visits often
face difficulties in terms of accuracy and
consistency of coding and compliance. An
additional advantage was that for the sub-
population being served (lower and moder-
ate income residents), these clinics are the
primary provider of health care services.
Therefore, the possibility of behaviors com-
plicated by competing servers, health plans,

Table 5. Percent change in clinic visits for lower respiratory symptoms predicted from alternative models

Young Older

PM10 2.5 (0.2-4.8) 3.7 (0.8-6.7)
PM10, less top 5% (235 pg/m3) 2.8 (0.4-5.3) 2.1 (-1.0-5.2)
PM10, less coldest 10% (80C) 2.5 (0.3-4.7) 3.9 (1.0-6.8)
PM10, nonsummer months 1.9 (-0.6-4.3) 3.7 (1.0-6.3)
PM1O, no month variable 8.9 (6.6-11.3) 12.6 (9.4-15.7)
Ozone 1.6 (-1.6-4.8) 5.4(1.3-9.6)

Values shown are percent change and 95% confidence interval associated with 50 gLg/m3 change in PM10 and 50 ppb
change in ozone, the approximate interquartile range. Regresssion results are based on the general additive model,
which includes daily average temperature, binary variables for day of week and month, and a Loess smooth of time.
PM10 is lagged 3 days and ozone is unlagged.

insurance, and accessibility is minimized.
There are three main disadvantages of

these data. First, the action of visiting a
clinic is ultimately a subjective choice that
can be influenced by several factors such as
competing demands, parents' attention to
illness, and the thresholds of discomfort of
the children. However, it is reasonable to
assume that these factors are randomized
over the range of pollution concentrations
and are not likely to vary on a day-to-day
basis with air pollution. Therefore, omitting
these factors from the analysis is unlikely to
result in a significant estimation bias.
Second, the public clinics primarily serve
the lower 70% of the population income
distribution, while citizens from the upper
quintile are typically served by private clin-
ics. Therefore, these estimates are not neces-
sarily representative of all children in
Santiago. If children from lower and mod-
erate income families were more susceptible
to the effects of air pollution, our estimates
would have an upward bias in representing
the entire population of children.

A third concern was that dinics are only
open on weekdays and during normal work-
ing hours. Furthermore, the number of
attending physicians varies on a daily basis
at the dinics to keep up with demand, thus
patients may have to wait for care.
Therefore, some patients may be discour-
aged from seeking medical attention.
Because the analysis indicates an association
between PMIO and dinic visits, it is possible
that on the higher air pollution days, visits
are "artificially" reduced. This would result
in a downward bias in the dose-response
curve. Visual observation of the data sug-
gests a leveling of the dose-response func-
tion at the higher levels of PM10 It is
unclear whether this is due to discouraged
demand or to other factors, such as higher
PM1O days being associated with less harm-
ful blowing dust. As part of the analysis,
other time-series models were investigated
in an attempt to adequately take account of
the potential influence of the supply of
physician hours. A particular concern was
the possibility that recorded respiratory visits

could be influenced causally by the availabil-
ity of physicians, which in itself might be an
endogenous variable if the number of physi-
cian hours varies with either pollution or
meteorological variables. We used an instru-
mental variables approach and vector
autoregressive techniques to examine the
question of endogeneity. The results indicat-
ed that capacity constraints in clinics was
not a problem in the estimation.

An additional concern was the lack of
data on sulfur or nitrogen dioxide. While
there has been little evidence of an acute
morbidity effect of sulfur dioxide on the
general population from the existing litera-
ture, European studies have reported an
effect from nitrogen dioxide (23).

For lower respiratory visits in both
infants and older children, a 3-day lag in
PM1O appears to be most significant among
the single-day lags. However, the cumula-
tive exposure over a 5-day period generates
the strongest effects. Several recent studies
have reported that lags of 2 days or more
are more strongly related to the health end
point than are concurrent exposure [for
example (16,17,21)]. The lag may be due
to either delays in seeking medical care or
to the pathogenesis of particulate matter in
its potential impact on lung clearance.
Upper respiratory visits in infants are more
randomized throughout the year and are
more difficult to model, as indicated by the
low R2 in those models. Part of the diffi-
culty in modeling may be due to the
greater role of an individual caregiver's atti-
tude about the infant's need for medical
attention. The results for multipollutant
models suggest the possibility of effects
from both particulate matter and ozone.
Daily concentrations of particulate matter
and ozone were not correlated over time.
Further, as summarized in Tables 2 and 4,
for most of the cohorts, the magnitude of
the effect of one pollutant was not impact-
ed by the inclusion of a second pollutant in
the model. Particulate matter was associat-
ed with LRS in both the younger and older
cohort, and ozone was associated with both
ULS and LRS in the older cohort.
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Because of concerns about potential
confounding, we controlled for the effects of
seasonality and temperature in several ways.
The basic model included a variable repre-
senting daily temperature and dichotomous
variables representing the month and year.
We then analyzed the data using Loess
smoothers for time, with and without vari-
ables representing the month of the study.
We also analyzed the data after deleting the
5% of days with highest PMIO concentra-
tions and the coldest 5% of days to ensure
that the results were not driven by any
extreme observations. The models were also
rerun after deleting the summer months.
With one exception, the results did not
noticeably change with any of these analyses.
Dropping the dichotomous variable for
month significantly increased the estimated
coefficient of PMIO suggesting that some
overcorrection for season in the model may
be occurring. Once season is successfully
modeled through the smooth function of
time, a causal independent effect of month
is difficult to reconcile. These variables may
borrow their effect from correlated variables
such as pollution or meteorology. The possi-
bility exists, therefore, that the magnitude of
the effect of air pollution on morbidity visits
is biased downward significantly when day
of week, month, and smoothers are includ-
ed. The problem of confounding in a multi-
variate model is an important one, and the
inclusion of a broad array of sensitivity
analyses-as applied here-is necessary to
gain confidence both in the significance and
magnitude of effects. Taken together, a sig-
nificant effect of PM1O on lower respiratory
disease does not appear be due to residual
confounding by temperature or season.

Our analysis indicates that for children
under 2 years of age a 50-pg/m3 change in
PM1O (the approximate interquartile range)
is associated with a 4-12% increase LRS.
For children 3-15 years of age the increase
in LRS ranges from 3 to 9% for a 50-
pg/mi3 change in PM10-and 5%/50 ppb
change in ozone. These magnitudes are
within the range of effects reported in stud-
ies undertaken in Western industrialized
nations. For example, these studies suggest
that a similar change in PM1O is associated
with a 4% increase in hospital admissions,
a 5% increase in emergency room visits,
and a 15% increase in lower respiratory
symptoms (24).
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